Application of Machine Learning Models to Bridge Afflux Estimation

نویسندگان

چکیده

Bridges are essential structures that connect riverbanks and facilitate transportation. However, bridge piers abutments can disrupt the natural flow of rivers, causing a rise in water levels upstream bridge. The levels, known as backwater or afflux, threaten stability service bridges riverbanks. It is postulated applications estimation models with more precise afflux predictions enhance safety flood-prone areas. In this study, eight machine learning (ML) were developed to estimate utilizing 202 laboratory 66 field data. ML consist Support Vector Regression (SVR), Decision Tree Regressor (DTR), Random Forest (RFR), AdaBoost (ABR), Gradient Boost (GBR), eXtreme Boosting (XGBoost) for (XGBR), Gaussian Process (GPR), K-Nearest Neighbors (KNN). To best authors’ knowledge, first time these have been applied afflux. performance ML-based was compared those artificial neural networks (ANN), genetic programming (GP), explicit equations adopted from previous studies. results show most utilized study significantly accuracy estimations. Nevertheless, few models, like SVR ABR, did not good overall performance, suggesting right choice an model important.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dust source mapping using satellite imagery and machine learning models

Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...

متن کامل

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Estimation of Tsunami Bore Forces on a Coastal Bridge Using an Extreme Learning Machine

Iman Mazinani 1,*, Zubaidah Binti Ismail 1,*, Shahaboddin Shamshirband 2, Ahmad Mustafa Hashim 3, Marjan Mansourvar 2 and Erfan Zalnezhad 4 1 Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 2 Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia...

متن کامل

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies

The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water

سال: 2023

ISSN: ['2073-4441']

DOI: https://doi.org/10.3390/w15122187